
CS277: Experimental Haptics – Stanford University 30 May 2014

Introduction

Our project was born out of a par-
ticularly stressful office hour session
for CS277, Experimental Haptics. In
RAGE QUIT, the user can touch,
smash and throw objects that shat-
ter when struck with enough force,
providing a satisfying form of stress
relief. The project integrates several
ideas of haptics and graphics, the
key ones being event-based haptics,
a robust dynamics engine, and frac-
turing of meshes.

Event-based Haptics

Given that our project is largely
about smashing objects, it was im-
portant to get the feeling of touch-
ing and shattering correct. We in-
troduced event-based haptics, forc-
es that are time-dependent instead
of position dependent. We modeled
our event forces as a decaying si-
nusoid summed with a fixed-width
pulse like so:

Where r(t) is the rectangular pulse.
Note that the coefficient is de-
pendent on the force initially striking
the object (). Then our total out-
put force would simply be the sum:

We have two different types of
events – a tap event (a gentle touch
of an object), and a shatter event
(smashing an object. Each event
generates a force in the same model
as above, simply different coeffi-
cients. The coefficients were chosen
arbitrarily and hand-tuned.

While working with this model,
we ran into stability issues where
the added force would oscillate in-
definitely. We remedied this by add-
ing a tolerance distance that the tool
would have to exceed before the
event was triggered again.

Dynamics

We used NVIDIA’s PhysX engine
since it is a well-known solution and
our game requires a robust dynam-
ics engine. We initially evaluated
Open Dynamics Engine, which was
already integrated with chai3D, but
found that the simulation of a large
number of particles was unstable.
Creating a chai3D-PhysX bridge took
longer than expected because of
documentation issues.

Fracturing

We attempted to add fracturing

using NVIDIA’s APEX Destruction

extension for PhysX. However, we

ran into some issues with the pro-

vided runtime libraries. In the inter-

est of time, we decided to write our

own fracturing solution based on an

object’s triangle mesh geometry. For

each object, we precompute the

fractured pieces by looping through

its constituent triangles and forming

a tetrahedron out of the ones whose

surface area are above a chosen

threshold. When a fracture event

occurs, we simply replace an object

with its precomputed children.

The advantage of this approach

is that it works with all object for-

mats based on triangle meshes.

However, for best results, it requires

a well-tessellated mesh where pla-

nar regions are subdivided into

smaller triangles. If not provided,

such tessellation can be done using

graphics techniques like Loop subdi-

vision.

RAGE QUIT
Mindy Huang
Ben-han Sung

Ben-han Sung

